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Abstract. Graph~-theoretic ideas are used to

A ANASAAANN
analyze cooperation structures in games. & specific
procedure is proposed for making a game's cooperaticn
structure depend endogenotisly on choices By the players.

FPair allocation rules, . defined with reflerence to
an equity criterion (that two players should gain equally:
from cooperation),: are proven to be unique,. o

vlosely related to the Shapley value, and stable for

a wide class of games. These ideas are extended to games
in "graph function" form, a new generalization of the
characteristie function form.
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GRAPHS AND COOPERATION IN GAMES
by Roger B. HMyerson

To build a theory of cooperative games, we must have a
way to deseribe cooperation_étructures. Thatt is, we need a
voecabulary in which to talk about who is cooperdting with whom
among the players. In most studies of games with many’ players,
the only concept of cooperation structure used is the coalition .
In this paper we develop the eohcapt of a 'cooperation graph ,
with which we can describea:much richer variety of cecooperation:
structures than we could with only the concept of 'coalitions .
We: will explore a number of related applications of this new concept
to games in: characteristic function form, and to games in a new,
more general graph function- form.

To mokivate the prégressbonﬁfrom coalitions to graphs,
consider the problem of masking the eoalition structure an endogenous
factor, to &epend-in some natural way on the player choices.
There does not seem to be anys satisflactory general solution
o this problem. For example, suppose that, in a three-player game,
player 1 wants to cooperate with player 2 but not with player 3,
3 wants to cooperate with 2 but not with 1, and 2 wants to cooperate
with both 1 and 3. No coalition structure seems to naturally
result from thgse*player preferences. Whether we try §f1,2}3‘23§§
or"{{lf, {2,3}§ or*f§1,2,3f§ s e2ch partition into coalitions
seems to suppress fSome significant aspects of this cooperative

situation.
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If we talk about systems of bilateral ecooperation links,
instea@.of coalitions, the dilemma disappears. In this example,
there should be a éoopérationllink between players 1 and 2, and -
between players 2 and 3, but there should be no link between
“players 1 and 3. So the following #raph naturally suﬁmarizes

the players' cooperation preferences:

For any set A, let RA repregent the set of zll wectors of
real nuﬁbers indexed on the members of A. (Equivalently, one may
eonsider RA ag the set of all functionslfrom-A into the reals.):

Let N be a nonempty finite set, tovbe interpreted as the
set of players. Let CL be the set of coalitions of players ia N:
(1) - oL =1{s| scN, s # g} . |

The set of games in characteristic function form is RCL.

" For any game wfe,vRCL

and any coalition S cCL, Vg (the S-~component
of ¥v) is interpreted as the wealth (of transferable utility) whish
coalition S would have to divide among its members if it were to form.
In Section 6 we will drop this implicit assumption that utility
is transferable.

A '§Z§Eg*'on N is a set of unordered pairs of distinct members
of N. We will refer to these unordered pairs as ‘'links ', and
we: will deﬁotefthe link between n and m by n,m’. Notiee that
n,m = m,n because the link is an unordered pair. Let EN be the

eomplete graph of all links:
(2) §N =A{n,ml neN, mEN, n # m}.



Then let GR be the set of all graphs of N, so thate
(3)  or-fef ec?'f.
Throughout this paper the symbol \ will be used to denote
removal off a member from a set. Thuss
(4) s.\n={i}. i€s, i #nf, gnmm = §iai| iideer LA mam
Suppose S€ CL, g€GR, ng N, and mgN are given. Then we

say that n and m are connected in S by g iff n = m or there
' 1

is some integer k=1 and a sequence (no, Ny eee nkl)"‘- such that:

n = no, m = nk,, and n QS and nl 1! cg for all i from 1 to k.
There is a unique partition of S which groups players together
iff.they are connected in S by g, and we will denote this partition
by -S/g- (read "S divided by g"). That is:
(5) S/g = 81[ i and j are connected in S by g%' jasg.
We can interpret S/g as the eollection of smaller‘eoalitions into
which S would break up, if players could only coordinate along
links in g.

When we speak of connectedness without reference to any
specific-cnalition, we will always mean connectedness in N,

For example, if N = §1 2, 3, 4, 5] ana g = §1,2, 1,4, 2,4, 3,4%,
then {1, 2, 37/g = {{1, 2}, 3%} ana N/g = ifl 2, 3, 4%, 3537 .

Suppose that graph g<GR effectivelys represents the cooperation

structure of a game, in that n,mcg iff n ahd m have a bilateral
cooperation agreement. Then the partition N/g is the natural
eoalition structure to associate with this cooperation structure.
That is, if we must speak of a ceoalition structure for the game,
then the most reasonable choiee is the partition into the
connected components of g in N. Letting links represent friendship,
the idea is that friends of one's allies must in some sense also

be one's allies. (As noted in the introduction, describing the



cooperation structure by a parfition might suppress some
significant information, but now we can retain the option to

reeall the underlieing graph structure if necessary.)

3. Endogenous cooperation structures and stable allocation rules.
We now propose a specific procedure for making the graphiecal
cooperation structure an endogenous function of player choices.
Simply assume that a link,representing a bilateral cooperation
relationship, wiil ﬁOrm'between two players iff both players want
it to form. To be precise, we allow each player n to choose a set
UhﬁEN\\n, representing the set of all players with whom he wants
cooperate. Then the graph of all cooperation links which will °

result from this sequence ¢ = (Jh) of player choices is:

ngh
(6) gx(g) = g&ﬂ. ; nEO‘m,, m\EUnf.

What criteria -player n should use, .in selecting his
cooperation-offer set Uh, must depend on how the eooperation
structure g*(F) will in turn inflluence ;he,payoff?te;player n in the
game. After all, each player is really only concerned with
maximizing his final utility payoff,_gnd tﬁe:;tructure of
cooperation is of interest only to the“exfent that cooperation
inmfluences the final outcome and allocation of utility. o
So we want to know how the payoft allocation in game v:&RCL -
will depend om the: cooperation structure g<GR. We hope to
find some@£ugc$ion3 Z}GRw?RN, mapping cooperation structures into
alloeation wectors, such that Y;(g) (the n-component of Y(g)) is
the utility payoff expected by player n when g is the set of

bilateral cooperation links which have formed..
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CL

Formally, for any characteristic function game v=R”", we define

an allocation rule for v to be any function Y&GR~?RN:such thate

(7) ¥ g<GR, ¥ S€N/g, & Ym(g) =
. nes -

This condition (7) expresses the idea that, if S is a connected
component of g -, then the members of S ought to allocate

to themselves the total wealth Vg which they can earn. Notice ..
that: the allocation within S still depends on the actual graph g.
For example, an allocation rule might give higher payoff to player 1
in graph gy, than in g5 illustrateé;below, because in g1 his position
is more essential to coordlnatlng the others; In each case, however,

eondition (7) requires that Z;i Yﬁ(gl) $;v§1,2,314,5§ i;i Yﬁ(gz

@)

Given an allocation rule Y:GR~+RN, we can ask whether §N,

the complete graph on N, is a Nash equilibrium outecome under the
procedure for determining the cooperation structure described

above (equation (6)). That is, if playjer n assumes that all other
players will offer to cobperate with him and with each othér; will he
have any incentive to try to disrupt the universal cooperation

by refusing to offer cooperation to certain othe;:z;3§ﬂ;ome set 39

If the answer is “no", then we can say that the alloeation rule ¥(.)

is stable . Formally, we say that Y:GR—R" is stable iff

(8) #ncN,#SCN\n,Y(’%>Y({,J[,;cg, i,i¢ Jnm |mc§§-
An even stronger property is total stability . We say -
that Y:GR—R" is -totally stable iff

(9) ¥ g€GR, ¥ n,mcg, 'f'n(g)'ZY’n(g\ n,m).
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So total stability means that a player never loses by forming
more cooperation relationships. Clearly total stability implies

stability.

4, Fair allocation rules
v /M/\/\/L/\//\_»\/‘/M

In this section we will show how imposing an equity criterion
leads to a unique allocation rule.

Consider a simple example: the "Divide the Dollar" game for

So players 1 and 2 can divide one unit of transferable utilityr

among themselves if they work together; alone each can get at most zero.
An allocation rule for this game must prescribetﬁi(¢y =0 = Y2(¢)

(¢ is the empty graph, with no links) and some cooperative
Vallocation-ﬁYi({ngf ),'Yé({ligh§)) such that

Yy (§La2)) + Yp({le2f) = 1.

The allocation rule will be stable iff‘Yl(fng})EZO and Yz(ing?TE:O.
Thus far, however, we have said nothing to suggest where the
cooperative allocation (¥;(71,23), ¥,(j1,2%)) should lie in the
interval between (0, 1) and (1, 0). Any allocation in this interval
has the same properties of stability and Pareto-optimality.
But unequal allocations like (.9, .1) or (.05, .95) would seem
~unfair and therefore unlikely to most observers. If the players
have an extra-utilitarian ethic against being - exploited or

teken advantage of° in the cooperation process, then the equal-gains
split of (.5, .5) must be the most likely outcome for this game.
Certainly we would an expeet an impartial arbitrator to suggest

Y15122§) = (.5, .5), tesed on considerations of symmetry or equity.
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So some equity criterion is needed to derive a useful theory
of cooperative allocation rules. The question is, bkow do we
generalize to games with many players the equity criterion
which solves the *Divide the Dollar" game, that players should
gain equally firom cooperation.

| One of the great advantages of our graphical cooperation
structures is that theyautomatieally’ resolve a cooperation problem
with many players: into a system of two-persom cooperation problems:
simply consider one link at a time. Given graph g =GR and link
n,meg, each of players m and m has an equal opportunity to break
the n,m link by refusing to offer cooperation to the other.
50 a reasonable equity criterion is that shey should gain

equally from their link. That is:

(10) ¥ g£GR, ¥ n,me g, I’n(g) - Yn(g\ n,m) = Ym(g) - Y;n(g\ n,m).

Given ve:RCB, we define a fajir allocation rule for v to

be any function Y:GR—#RN

satisfying both the equity econdition (10)
and the efficiehcy condition (7). Our main result is that there

is a unique such fair allocation rule for each game.

THEOREM 1. ~ For any characteristie function game vcéRCL,

¥

there is a unique fair allocecation rule Y:GR-R' satisfying

conditions (7) and (10).

An exact formula can be giwen for this fair alloecation ruile.

For any game v& RCEI';ahd any graph g< GR, &efine v/ngRCI’ so thatey
(11)  ¥5&CL, (ve)g= Z. vy -
T<S/g

" (Recall the definition of S/g in (5).) So v/g can be interpreted



8.
as the characteristic function game which would result if we
altered the situation represented by v, by requiring that players

can only coordinate along links in g. Notice that v/éNés v.

" PHEOREM 2. The unique fair allocation rule ¥:GR—RY for
géme we R satisfies:
" Y(g) = ¢(v/g), ¥ g& GR,
where: ¢>RCL—9RN is the Shapley value operator. (See [SHAPIEY,
1953].) In particular, ¥(&") = ¢g(v).

A game vmaRCL is ‘supermdditive  iff:

(12) ©  ¥s%ccL, ¥ T€CL, if SNT = ¢ then Vs yr =Vs * Vpe

CL

THEOREM 3. If wve R is superadditive, then the fair allocation

rule for v is totally stable.

5. Example.

P A A et SN

Let N = fl, 2, 3?, and consider the game vw;RCL

where:

V;lg = 'V')-2§ = V}—B‘g = O, V§1,3§ = Vf2’3§ = 69 and V-;l,2§= Vr"[l,z,B} = 12.
The fair allocation rule for this game is as follows:

Y(g) = (0, 0, 0); ¥(31,2, 1,37) = (7, 4, 1):
v(i1,27) = (6, 6, 0)5  Y(j1,2, 2,37) = (4, 7, 1);
Y(§1,33) = (3, 0, 3); Y(§1,3s 2,39) = (3, 3, 6);
Y(f2,33) = (0, 3, 3); Y( 1,2, 1,3, 2,3 ) = (5, 5, 2).

The Shapley value of v is g(v) = YT§N5 = (5, 5, 2).
This example was chosen because most other well-known
solution concepts, the core and the nucleolus and the bargaining

set, all select the single allocation (6, 6, 0) for this game.
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These solution concepts are all based on ideas about what it
means for the universal coalitiom N to be stable against.
objections. Aecording to the argument for the ecore, (5, 5, 2)
should be an unstable alleeation because players 1 and 2 couiad
earn 12 units wealth for themselves, which excedes the wealth
545 = 10 given to them. But’when we shift our perspective from
coalitions to cecooperationm graphs, this argument evaporates, and
the value (5, 5, 2) actually is part of a totally stable fair
allocation rule. If any one player were to break either or
both of his cooperation links, then his fair allocation would
decrease. (Check the table above.) To be sure, if both players
1 and 2 were to simultaneouslys break their links with 3, then:
both would benefit; but each would‘benefit even more if he continued
to cooperate with piayer 3 while the other zlone broke his link
to player 3.

Thus, this example illustrates how our cooperation graph
and fair allocation rule ideas give a new justification for- the

Shapley value.

6. Games in graph function form.
'M—/L/\_/\\/'N LN

The ideas in this paper can be extended to games without
transferable utility, and to games in "partition function form".
To show the full generality of our ideas, we introduce a new and

even more general game form: the graph function form .

An embedded subgraph’ is a pair (s,g) such that g is a

graph and 5 is a connected component of g in N. Formally,
we let ESG denote the set of all embedded subgraphs, and then
by definition:

(13)  ®Se = f(s,g)( g € CR, seNf/gj .
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S

A set W<ER is comprehensive. iffe.

¥ acW, ¥ beR’, if a_3 b, ¥ ncl, then bEW.
W is a proper subset of B° iff weR® and § # W # R°.
Let ) denote the boundary operator, so that ifFW@:RS then oW
is the boundary of W in Rsm

A game in“graph function form- is a set-valued function w(,)

with domain BSG, such that ¥ (S,g)<BSG, w(S,g) is a closed and
comprehensive preper subset of RS. We interpret w(S,g)

as the set of utility allocations which are feasible for the
‘plé.yens: in S when g is the set of bilateral cooperation links.
If cooperation structure g is given then ow(S,g) is the (weakly’)
Pareto-optimal frontier for the members of S.

CL

A characteristic funetion game vgR can be identified with a

'gra'ph function game w(:) iff w(S,g)-= ?r.éBS! 'ZC-E“ I:n,évsg , ¥ (8,g)eESG
A£11 the ideas introduced in Sections 3 and 4 ghriugh Theorem 1

can be extended to graph function games, execept that econdition (7)

must be replaced by

(14) ¥ g<GR, ¥ SEN/&, (Y (2)),c S(S,a).

5o a fair allocation rule for a graph function game w(.) must

satis.ﬁy the efficiency eondition (14) and the equity eonditiom (10).

Our final result generalizes Theorem 1.

THEOREM 4. For any graph function game w(.), there is a
unique fair allocztion rule Yr’:GR-bRN satisfying conditions

(14) and (10).
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+ 7. Proofs

ANANANS
We begin with Theorem 4.

PROOF OF THEOREM 4.
For any graph g, let |gj be the number of links in g.
We will write hC g iff h&€g and h # g.

Observe that, if n,meg, then:

> ‘(-i)‘g'+’h4c¥h(h1:\ T\ nm) = 2 (1) R )
h< g hEg
n,meh

- ?I},(g) - hgg (-i) o v fnf +3 ¥, (B).

* So condition (10) will hold iff:

(15) ¥ geGR, ¥nmee, Y,(g) - hif (-1) 81+ B g ()
< g

=¥ () - 2 (-1)'8lrII gy ),
hc_g

Neither side of the equation in (15) actuailyr“d?epends on the
link n,m, so the equation will Hold between all linked pairs of
players iff it holds between all connected pairs of players.

So condition (10) is also equiwalent tor

(16) ¥ g2GR, ¥ SEN/g, there exists a number d(S,g)

such that Y’(g) - ZZ. (- l)’gf + ol +1

'Yh(h) B d;(S',g)"”, ¥ ne S.
hc:g‘

Given (16), condition (14) will be satisfied iff:

(17) a(s,g) = mai’c_.ix’ (x + hgg( -1) | gf +ln| +1 Y, (n)) eSEW(S',g‘")E,

¥ (s,g)cESG.
But max gx-( (= + rn)nCSC—IW(S,g)g is always uniquely defined,

for any vector (f"r. ) €R , because w(S,g) is closed, comprehensive,

n&s
and a proper subs.et of RS.

Thus, Y:GR>RY will satisfy (10) and (14) iff it is constructed
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by the following equations:
¥ g&GR, ¥ SE€N/g, ¥ ne S:

(18a) t,(g) = ﬁgg (-1) '8+ n), 4 () = 03
(180)  &(S,g) = max ¥ x| (x + t.(&)), _gew(S,8)];
(18c) ¥, (g) = t (g) + d(s,g).

These equations can be solved in order of inereasing ,’g{, and

the solution is the unique fair allocmtion rule for w(.).

- PROOF OF THEOREM 1.

Theorem 1 follows immediately from Theorem 4, taking

n(5.8) = F(rahes | IPECAR

PROOF OF THEOREM 2.

We must prove that Y(g) = yﬁ(V/g), ¥ g £GR, implies conditions
(7) and (10).

We show (7) first. Select any g« GR. For each SeN/g,

S CL

define & £R so that

Wl = 2 vy » ¥ TCOL.
Re (TNns)/g

Now, any two players connected in T by g are also connected -
in N by g, s0O
vg= U (rns)/e.

SE N/g
Pherefore vw/g = pa us. But S is a carrier of us, hecause
SE N/g
ug = ugns. (The coneept of a ‘carrier is defined in [SHAPLEY, 19537 )

So, using the carrier axiom in {SHAPLEY, 19531, for any S<KN/g

and any T€EN/g?
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Z: (w) = if- 5 =173
nES Qon uy
10 ,ifSﬂT==%
Thus, by linearity of ¢, if SEN/g then
Z P (v/g) = Z_ Z e (ul) = uy = 2. Vi

né€ S TEN/g ncS RES/g

To show (10Y), reeall the Shapley value formulas
(19) @ (v)= 2_ a_ oV
2 s<er WS 87

. where a5 = ( |si -1):’N§:Iml-—(sf): . if nEs,

isl\! ({%};1}-(34-1).‘. , if nds.

= 0 if $n,mi<s.

Let b Notice that b

m,m,5 - ®n,8 ~ %m,s" m,S
Notice also that S/g = S/g\n,m) if jn, mlis. Therefore:

$.(v/e) - @ (v/g) = 2. b S 2. v, =

se€cn ™ res/g
- b S vy = (v/e\mm) - @ (v/g\n,m).
scen ™S res/gNn,m

PROOF OF THEOREM 4.
Observe that S/(g\n,m) always refines S/g as a partition of §,

anhd if n¢S then S/(g\n,m) = S/g. So, if v iz superadditive,

g - > =
(v/g)g 0 E5/e Vi re e n,m Ve = (v/&\n,m)g
and the inequality becomes an equality if nyﬁS. Therefore:
@, (v/g) - P (v/g\n,n ZZCL a, g ((v/8)g = (v/exnum)g)
= SZCL US\"I)S,I;T,‘(. |- (51)¢ ((v/g)g = (v/g\n,m)g ) =
c L _ :

rangcS
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